Как снизить вес элемента конструкции самолета на треть

slm-asco-case-pv1
Ольга Горобец
slm-asco-case-pv1

Проект оптимизации и аддитивного производства элемента авиационной конструкции, осуществленный компаниями ASCO Industries и SLM Solutions, в очередной раз доказал эффективность технологии селективного лазерного плавления. Новое решение позволило улучшить конструкцию и снизить массу детали, а также сократить общее время сборки и механической обработки. 

О компании ASCO Industries n.v.

ASCO — бельгийская аэрокосмическая компания с головным офисом в Брюсселе. Она является признанным мировым лидером в области разработки механизмов привода предкрылков (на передней кромке крыла) и закрылков (на задней кромке крыла), а также механической обработки высокопрочных сталей, титана и алюминиевых сплавов. Компания ASCO также славится широкими возможностями по производству и сборке при создании высокоточных и экономичных решений для самолетных шасси и таких элементов конструкции, как фюзеляжные рамы и узлы крепления двигателя.

3D печать металлами в производстве авиационных компонентов
S-образный кронштейн – элемент исполнительного механизма системы увеличения подъемной силы самолета

Структурный элемент механизма привода щитков Крюгера

Рассматриваемый S-образный кронштейн – структурный элемент механизма привода щитков Крюгера, разработанного компанией ASCO в рамках проекта AFLoNext. Считается, что щитки Крюгера способны эффективно заменить предкрылки на передней кромке крыльев в будущих платформах с ламинарным обтеканием крыла.

Кронштейн служит шарнирным соединением, связывающим щиток Крюгера с фиксированной передней кромкой. Его элегантная форма – результат жестких требований к распределению пространства и высоких нагрузок на посадочные поверхности. Изначальный проект предполагал механическую обработку кронштейна компанией ASCO. Механически обрабатываемая версия выполняется из высокопрочной нержавеющей стали и весит 2005 г. Интерес к данному элементу вызван тем, что в своем исходном виде он требует сложной механической обработки и обладает плохим коэффициентом использования материала.

Компонент, произведенный по технологии селективного лазерного плавления
 

Решение найдено: селективное лазерное плавление

Компании ASCO и SLM Solutions осуществили совместный проект оптимизации для получения наилучшей новой конструкции S-образного кронштейна. Инженеры компании SLM Solutions участвовали в оценке различных этапов проектирования с целью повышения технологичности. Применение технологии селективного лазерного плавления (установка с двумя лазерами) позволило сократить время изготовления с 82 до 48 часов. Компании SLM Solutions удалось успешно настроить процесс с учетом эксплуатационных напряжений конструкции и теплообменных свойств крупных титановых деталей.

Оптимизация конструкции кронштейна

Поскольку печать элемента, рассчитанного на механическую обработку, дает мало дополнительных преимуществ, конструкция S-образного кронштейна была переработана под аддитивное производство путем топологической оптимизации. Ее целью было минимизировать массу с сохранением необходимой прочности, позволяющей выдерживать аэродинамические нагрузки, оговоренные в проекте AFLoNext. Кроме того, в кронштейн были интегрированы два других элемента. Масса кронштейна после оптимизации составляет 1416 г (исходный узел весил 2050 г), что означает снижение массы на 31% и сокращение общего времени сборки.

Повышение коэффициента использования материала

Коэффициент использования материала механически обрабатываемой версии был равен примерно 17, а у детали, напечатанной на аддитивной установке SLM Solutions, этот показатель снизился до 1,5 (с учетом удаляемых поддержек и небольшого количества дополнительного материала, снимаемого в ходе постобработки поверхностей с высокими требованиями по точности).

Топологическая оптимизация кронштейна

Сокращение времени механической обработки

Прежнее время мехобработки, начиная с исходной заготовки, составляло около 4,5 часов. Применяя технологию селективного лазерного плавления, обработке нужно подвергнуть лишь несколько поверхностей, которые выделены красным цветом на рисунке вверху справа.

Результат проекта 3D-печати металлами

  • Снижение массы на 31% и сокращение общего времени сборки.
  • Объединение трех деталей в одну.
  • Снижение коэффициента использования материала с 17 до 1,5.
  • Значительное сокращение времени механической обработки.
  • Сокращение сроков производства на 42% до 24 часов/деталь за счет использования принтера SLM 280 Twin (по сравнению с однолазерным принтером).

 New call-to-action

8 главных областей применения 3D-печати металлом
Быстрый и простой реверс-инжиниринг: профессионалы выбирают Geomagic Design X

Об авторе

Ольга Горобец
Ольга Горобец

Маркетолог и координатор отраслевых проектов в iQB Technologies. В составе креативной команды специалистов по продвижению 3D-решений Ольга создает и реализует интересные мероприятия, посвященные усовершенствованию технологических процессов на российских предприятиях с помощью 3D-технологий. А еще она является членом международного клуба ораторского искусства на английском языке Toastmasters, увлекается современной зарубежной литературой и путешествует по миру при любой удобной возможности. Ольга уверена, что у 3D-решений большое будущее, а значит, мы идем в верном направлении и помогаем делать мир немного лучше.

Читайте также
Rolls Royce выбирает 3D-печать металлом для авиакосмического производства
Rolls Royce выбирает 3D-печать металлом для авиакосмического производства
Как 3D-сканер повышает шансы на победу в автогонках
Как 3D-сканер повышает шансы на победу в автогонках
3D-печать прототипа горнолыжного шлема: от идеи до готового изделия
3D-печать прототипа горнолыжного шлема: от идеи до готового изделия

Оставьте комментарий